Grothendieck Groups of Poisson Vector Bundles

نویسنده

  • VIKTOR L. GINZBURG
چکیده

A new invariant of Poisson manifolds, a Poisson K-ring, is introduced. Hypothetically, this invariant is more tractable than such invariants as Poisson (co)homology. A version of this invariant is also defined for arbitrary algebroids. Basic properties of the Poisson K-ring are proved and the Poisson K-rings are calculated for a number of examples. In particular, for the zero Poisson structure the K-ring is the ordinary K-ring of the manifold and for the dual space to a Lie algebra the K-ring is the ring of virtual representations of the Lie algebra. It is also shown that the K-ring is an invariant of Morita equivalence. Moreover, the K-ring is a functor on a category, the weak Morita category, which generalizes the notion of Morita equivalence of Poisson manifolds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Grothendieck Groups of Bundles on Varieties over Finite Fields

Let X be an irreducible, projective variety over a finite field, and let A be a sheaf of rings on X. In this paper, we study Grothendieck groups of categories of vector bundles over certain types of ringed spaces (X,A). Mathematics Subject Classifications (2000): 11-XX, 19-XX, 14-XX, 13-XX.

متن کامل

Toric Varieties with Huge Grothendieck Group

In each dimension n ≥ 3 there are many projective simplicial toric varieties whose Grothendieck groups of vector bundles are at least as big as the ground field. In particular, the conjecture that the Grothendieck groups of locally trivial sheaves and coherent sheaves on such varieties are rationally isomorphic fails badly.

متن کامل

Equivariant Vector Bundles on Quantum Homogeneous Spaces

The notion of quantum group equivariant homogeneous vector bundles on quantum homogeneous spaces is introduced. The category of such quantum vector bundles is shown to be exact, and its Grothendieck group is determined. It is also shown that the algebras of functions on quantum homogeneous spaces are noetherian.

متن کامل

Vector Bundles over Classifying Spaces of Compact Lie Groups

The completion theorem of Atiyah and Segal [AS] says that the complex K-theory group K(BG) of the classifying space of any compact Lie group G is isomorphic to R(G)̂ : the representation ring completed with respect to its augmentation ideal. However, the group K(BG) = [BG,Z × BU ] does not directly contain information about vector bundles over the infinite dimensional complex BG itself. The purp...

متن کامل

ON THE GALOIS STRUCTURE OF EQUIVARIANT LINE BUNDLES ON CURVES By A. AGBOOLA and D. BURNS

Let k be a finite field, and let X be a smooth, projective curve over k with structure sheaf O. Let G be a finite group, and write Cl (O[G]) for the reduced Grothendieck group of the category of O[G]-vector bundles. In this paper we describe explicitly the subgroup of Cl (O[G]) which is generated by the classes arising from G-stable invertible sheaves on tame Galois covers of X which have Galoi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008